A pr 2 00 6 Symmetric powers of elliptic curve L - functions

نویسنده

  • Mark Watkins
چکیده

The conjectures of Deligne, Bĕılinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebrogeometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloch-Kato quotients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

40 95 v 2 1 7 A pr 2 00 6 Symmetric powers of elliptic curve L - functions

The conjectures of Deligne, Bĕılinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebrogeometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloc...

متن کامل

1 7 A pr 2 00 6 Symmetric powers of elliptic curve L - functions

The conjectures of Deligne, Bĕılinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebrogeometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloc...

متن کامل

Symmetric Powers of Elliptic Curve L-Functions

The conjectures of Deligne, Bĕılinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebrogeometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloc...

متن کامل

A pr 2 00 2 Determinant Expressions for Hyperelliptic Functions ( with an Appendix by Shigeki Matsutani )

Although this formula can be obtained by a limiting process from (0.1), it was found before [FS] by the paper of Kiepert [K]. If we set y(u) = 12℘ ′(u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the equality

متن کامل

Euler Factors and Local Root Numbers for Symmetric Powers of Elliptic Curves

For any elliptic curve E over a number field, there is, for each n ≥ 1, a symmetric n-power L-function, defined by an Euler product, and conjecturally having a meromorphic continuation and satisfying a precise functional equation. The sign in the functional equation is conjecturally a product of local signs. Given an elliptic curve over a finite extension of some Qp, we calculate the associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006